一种基于深度学习的材料显微图像与性能双向预测方法
授权
摘要

本发明涉及一种基于深度学习的材料显微图像与性能双向预测方法,提出CNN与DNN相结合的算法用以处理多种输入的并行预测。以CNN提取材料显微图像特征,在第一层全连接层加入以材料成分,工艺为代表的一维特征向量。综合图像特征,其他特征为DNN输入,实现材料综合特征与性能的回归预测或分类。在GAN大量生成图像的基础上,使用前面预测模型对生成的图像性能进行预测。为了增加实验结果的可信度,可以训练三个不同的网络进行预测,最终去三者的交集作为目标图像输出。通过结合卷积神经网络提取特征与成分、工艺等特征,模型与性能的拟合度大幅提升,避免模型欠拟合,性能分类的预测方法符合生产实际需求。

基本信息
专利标题 :
一种基于深度学习的材料显微图像与性能双向预测方法
专利标题(英):
暂无
公开(公告)号 :
CN112101432A
申请号 :
CN202010923773.2
公开(公告)日 :
2020-12-18
申请日 :
2020-09-04
授权号 :
CN112101432B
授权日 :
2022-06-07
发明人 :
杨宁古胜利郭雷
申请人 :
西北工业大学
申请人地址 :
陕西省西安市友谊西路127号
代理机构 :
西北工业大学专利中心
代理人 :
王鲜凯
优先权 :
CN202010923773.2
主分类号 :
G06K9/62
IPC分类号 :
G06K9/62  G06K9/46  G06N3/04  G06N3/08  
IPC结构图谱
G
G部——物理
G06
计算;推算或计数
G06K
数据识别;数据表示;记录载体;记录载体的处理
G06K9/00
用于阅读或识别印刷或书写字符或者用于识别图形,例如,指纹的方法或装置
G06K9/62
应用电子设备进行识别的方法或装置
法律状态
2022-06-07 :
授权
2021-01-05 :
实质审查的生效
IPC(主分类) : G06K 9/62
申请日 : 20200904
2020-12-18 :
公开
注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。
文件下载
暂无PDF文件可下载
  • 联系电话
    电话:023-6033-8768
    QQ:1493236332
  • 联系 Q Q
    电话:023-6033-8768
    QQ:1493236332
  • 关注微信
    电话:023-6033-8768
    QQ:1493236332
  • 收藏
    电话:023-6033-8768
    QQ:1493236332